The Bilaterian Head Patterning Gene six3/6 Controls Aboral Domain Development in a Cnidarian

نویسندگان

  • Chiara Sinigaglia
  • Henriette Busengdal
  • Lucas Leclère
  • Ulrich Technau
  • Fabian Rentzsch
چکیده

The origin of the bilaterian head is a fundamental question for the evolution of animal body plans. The head of bilaterians develops at the anterior end of their primary body axis and is the site where the brain is located. Cnidarians, the sister group to bilaterians, lack brain-like structures and it is not clear whether the oral, the aboral, or none of the ends of the cnidarian primary body axis corresponds to the anterior domain of bilaterians. In order to understand the evolutionary origin of head development, we analysed the function of conserved genetic regulators of bilaterian anterior development in the sea anemone Nematostella vectensis. We show that orthologs of the bilaterian anterior developmental genes six3/6, foxQ2, and irx have dynamic expression patterns in the aboral region of Nematostella. Functional analyses reveal that NvSix3/6 acts upstream of NvFoxQ2a as a key regulator of the development of a broad aboral territory in Nematostella. NvSix3/6 initiates an autoregulatory feedback loop involving positive and negative regulators of FGF signalling, which subsequently results in the downregulation of NvSix3/6 and NvFoxQ2a in a small domain at the aboral pole, from which the apical organ develops. We show that signalling by NvFGFa1 is specifically required for the development of the apical organ, whereas NvSix3/6 has an earlier and broader function in the specification of the aboral territory. Our functional and gene expression data suggest that the head-forming region of bilaterians is derived from the aboral domain of the cnidarian-bilaterian ancestor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Came First, the Head or the Brain?

The sea anemone, a cnidarian, has no brain. It does have a nervous system, and its body has a clear axis, with a mouth on one side and a basal disk on the other. However, there is no organized collection of neurons comparable to the kind of brain found in bilaterians, animals that have both a bilateral symmetry and a top and bottom. (Most animals except sponges, cnidarians, and a few other phyl...

متن کامل

Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8

The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct pattern...

متن کامل

Expression of six3 and otx in Solenogastres (Mollusca) supports an ancestral role in bilaterian anterior‐posterior axis patterning

The homeodomain transcription factors six3 and otx are involved in patterning the anterior body and parts of the central nervous system (CNS) in bilaterians. Their similar expression patterns have been used as an argument for homology of heads, brains, segmentation, and ciliated larvae. We investigated the developmental expression of six3 and otx in the aplacophoran mollusk Wirenia argentea. Si...

متن کامل

Are Hox Genes Ancestrally Involved in Axial Patterning? Evidence from the Hydrozoan Clytia hemisphaerica (Cnidaria)

BACKGROUND The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" p...

متن کامل

FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis.

Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013